skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rapagnani, Rachel M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. 3-ethyl-6-vinyltetrahydro-2H-pyran-2-one (EVP) is a CO2-derived lactone synthesized via Pd-catalyzed telomerization of butadiene. As EVP is 28.9% by weight CO2, it has received significant recent attention as an intermediary for the synthesis of high CO2-content polymers. This article provides an overview of strategies for the polymerization of EVP to a wide variety of polymer structures, ranging from radical polymerizations to ring-opening polymerizations, that each take unique advantage of the highly functionalized lactone. 
    more » « less
  2. Carbon dioxide is inexpensive and abundant, and its prevalence as waste makes it attractive as a sustainable chemical feedstock. Although there are examples of copolymerizations of CO2 with high-energy monomers, the direct copolymerization of CO2 with olefins has not been reported. Herein, an alternate route to functionalizable, recyclable polyesters derived from CO2, butadiene and hydrogen via an intermediary lactone, 3-ethyl-6-vinyltetrahydro-2H-pyran-2-one, is described. Catalytic ring-opening polymerization of the lactone by 1,5,7-triazabicyclo[4.4.0]dec-5-ene yields polyesters with molar masses up to 13.6 kg/mol and pendent vinyl sidechains that can undergo post-polymerization functionalization. The polymer has a low ceiling temperature of 138 ºC, allowing for facile chemical recycling, and is inherently biodegradable under aerobic aqueous conditions (OECD-301B protocol). These results mark the first example of a well-defined polyester derived from CO2, olefins and hydrogen, expanding access to new polymer feedstocks that were once considered unfeasible. 
    more » « less